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Abstract

Vectors of Locally Aggregated Descriptors (VLAD) have emerged as powerful image/video
representations that compete with or even outperform state-of-the-art approaches on many chal-
lenging visual recognition tasks. In this paper, we address two fundamental limitations of VLAD:
its requirement for the local descriptors to have vector form and its restriction to linear classifiers
due to its high-dimensionality. To this end, we introduce a kernelized version of VLAD. This not
only lets us inherently exploit more sophisticated classification schemes, but also enables us to effi-
ciently aggregate non-vector descriptors (e.g., tensors) in the VLAD framework. Furthermore, we
propose three approximate formulations that allow us to accelerate the coding process while still
benefiting from the properties of kernel VLAD. Our experiments demonstrate the effectiveness of
our approach at handling manifold-valued data, such as covariance descriptors, on several classifi-
cation tasks. Our results also evidence the benefits of our nonlinear VLAD descriptors against the
linear ones in Euclidean space using several standard benchmark datasets.

1. Introduction

This paper introduces several nonlinear formulations of Vectors of Locally Aggregated Descriptors
(VLAD) that generalize their use to manifold-valued local descriptors, such as symmetric posi-
tive definite (SPD) matrices, and allows them to inherently exploit more sophisticated classifica-
tion algorithms. Modern visual recognition techniques typically represent images by aggregating
local descriptors, which, compared to image intensities, provide robustness to varying imaging con-
ditions. From a historical point of view, this trend was gained momentum by the Bag-of-Words
(BoW) model Sivic et al. (2005); Grauman and Darrell (2005); Lazebnik et al. (2006), which had a
significant impact on recognition performance. Since then, the notable recent developments include
dictionary-based solutions Winn et al. (2005); Yang et al. (2009), Fisher Vectors (FV) Perronnin
and Dance (2007); Perronnin et al. (2010b), VLAD Jégou et al. (2010); Arandjelovic and Zisser-
man (2013) and Convolutional Neural Networks (CNN) Krizhevsky et al. (2012).

Among the aforementioned techniques, VLAD stands out for the following reasons:

• VLAD is computed via primitive operations. This makes VLAD extremely attractive when
computational complexity is a concern.
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• In contrast to CNNs, training a VLAD encoder is straightforward and not contingent on hav-
ing a large training set.

• VLAD can be considered as a special case of FVs and hence inherits several properties of
FVs. The most eminent one is its theoretical connection to the Fisher kernel Jaakkola et al.
(1999).

• From an empirical point of view, VLAD has been shown to either deliver state-of-the-art ac-
curacy, or compete with the state-of-the-art methods. For instance, for scene classification
on the MIT Indoor dataset, multi-scale VLAD, with only 4096 features, comfortably out-
performs the mixture of FV and bag-of-parts, which relies on 221550 features Gong et al.
(2014).

Despite its unique features, VLAD comes with its own limitations. In particular, VLAD is
designed to work with local descriptors in the form of vectors. Yet, several recent studies in com-
puter vision suggest that structural data (e.g., SPD matrices, graphs, orthogonal matrices) have the
potential to provide more robust descriptors. Furthermore, since VLAD typically yields a high-
dimensional image representation, it is mostly restricted to employing linear classifiers. Nonethe-
less, the effectiveness of kernel-based methods has been proven many a time in visual recogni-
tion Gehler and Nowozin (2009); Bo et al. (2010); Perronnin et al. (2010a); Vedaldi and Zisserman
(2012a).

In this paper, we present kernel based formulations of VLAD to address the aforementioned
shortcomings. In particular, we first introduce a kernelized version of VLAD that relies on mapping
of each local descriptor to a Reproducing Kernel Hilbert Space (RKHS). Since several valid kernel
functions have recently been defined for non-vector data Jayasumana et al. (2013); Harandi et al.
(2014b), such a RKHS mapping can be applied to descriptors on different manifold topologies
including SPD matrices and linear subspaces (Grassmannian). Having a RKHS mapping, we can
aggregate VLAD over various geometries, thus, ultimately generalize the use of VLAD to local
descriptors defined in non-vector spaces. Furthermore, the inherent nonlinearity of mappings to
RKHS allows us to exploit more advanced classifiers with kernel VLAD.

In the spirit of computational efficiency, we also design three novel nonlinear approximations of
our kernel VLAD; a Nyström method that obtains an explicit mapping to the Hilbert space, a local
subspace-based representation of the data in Hilbert space, and a Fourier approximations based on
the Bochner theorem. These approximations enjoy the similar properties of kernel VLAD, yet have
the additional benefit of providing us with faster coding schemes. Table 1 provides a summary of
the proposed methods and their attributes.

Our experimental evaluation demonstrate the effectiveness of our approach at handling manifold-
valued data in a VLAD framework. Furthermore, we evidence the benefit of exploiting nonlinear
classifiers for visual recognition by comparing the performance of our nonlinear VLAD with the
standard one on several benchmark datasets, where the local descriptors have a vector form.

1.1 Related Work

Most of the popular image classification methods extract local descriptors (i.e., at patch level),
which are then aggregated into a global image representation Lazebnik et al. (2006); Perronnin and
Dance (2007); Jégou et al. (2010); Perronnin et al. (2010b); van Gemert et al. (2010); Krizhevsky
et al. (2012); Arandjelovic and Zisserman (2013).
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Table 1: Proposed methods and their properties. Kernel denotes the type of kernel function the algorithm
can accept. For example, the fVLAD algorithm can only work with certain type of kernel functions while
the kVLAD method can accept all type of kernel functions. Coding reflects the form of the output of the
algorithm. For example, in the case of kVLAD, the output codes are only known implicitly. Complexity is
the computational load.

Method Kernel Coding Complexity
kVLAD general Implicit High
nVLAD general Explicit Low
fVLAD specific Explicit Low
sVLAD general Explicit Low

When large amounts of training data are available, CNNs have now emerged as the method
of choice to learn local descriptors. With limited number of training samples, existing methods
typically opt for handcrafted features, such as SIFT.

To aggregate local features, in addition to operations such as average-pooling and max-pooling,
histogram-based solutions (e.g., BoW) have proven successful. Going beyond simple histograms
has been an active topic of research for the past decade. For instance, Lazebnik et al. (2006) ag-
gregates histograms computed over different spatial regions. More recent developments, such as
FVs Perronnin and Dance (2007) and VLAD Jégou et al. (2010), suggest that high-order statistics
should be encoded in the aggregation process.

In a separate line of research, structured descriptors (e.g., covariance descriptors or linear sub-
spaces) have been shown to provide robust visual models Tuzel et al. (2008); Jayasumana et al.
(2013); Harandi et al. (2013). Being of a non-vectorial form, aggregating such descriptors is hard
to achieve beyond simple histograms. Nonetheless, one would like to benefit from the best of both
worlds, that is, using robust non-vectorial descriptors in conjunction with state-of-the-art aggrega-
tion techniques, such as VLAD. This, in essence, is what we propose to achieve in this paper via
kernelization. Furthermore, our approach has the additional advantage of allowing us to inherently
exploit nonlinear classifiers that have proven powerful in visual recognition.

While a full review of kernel-based methods in computer vision is beyond the scope of this
paper, the recent work of Mairal et al. (2014) is of particular relevance here. Mairal et al. (2014)
introduces an approach to employing kernels within a CNN framework. Here, we perform a similar
analysis within the VLAD framework, with the additional benefit of obtaining a representation that
lets us work with manifold-valued data.

2. Nonlinear VLAD

In this section, we derive several nonlinear formulations of VLAD. To this end, we first start by
reviewing the conventional VLAD and then discuss our approach to kernelizing it, followed by
three approximations of the resulting kernel VLAD.

2.1 Conventional VLAD

Let X = {xi}Ni=1,xi ∈ Rd be a set of local descriptors extracted from a query image or a video.
In VLAD Jégou et al. (2010), the input space Rd is partitioned into m Voronoi cells by means of
a codebook C with centers {cj}mj=1, ci ∈ Rd. To obtain the codebook, the k-means algorithm is
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typically employed. Nevertheless, the use of supervised algorithms has also recently been advocated
to build more discriminative codebooks Peng et al. (2014). The VLAD code v ∈ Rmd for the query
set X is obtained by concatenating m Local Difference Vectors (LDV) δj storing, for each center,
the sum of the differences between this center and each local descriptor assigned to this center. This
can be written as

v(X ) =
[
δT1 (X ), δT2 (X ), · · · , δTm(X )

]T
, (1)

where

δj(X ) =

N∑
i=1

aij
(
cj − xi

)
, (2)

with aij a binary weight encoding whether the local descriptor xi belongs to the Voronoi cell with
center cj or not, i.e., aij = 1 if and only if the closest codeword to xi is cj .

2.2 Kernel VLAD (kVLAD)

As mentioned earlier, the conventional VLAD is designed to work with local descriptors of a vec-
torial form. As such, it cannot handle structured data representations, such as SPD matrices, or
subspaces. While such representations could in principle be vectorized, this would (i) yield imprac-
tically high-dimensional VLAD vectors; and (ii) ignore the geometry of these structured represen-
tations, which has been demonstrated to result in accuracy losses Pennec et al. (2006); Tuzel et al.
(2006, 2008); Jayasumana et al. (2013). Here, we propose to address this problem by kernelizing
VLAD.

To this end, let us redefine the query set of local descriptors as X = {xi}Ni=1,xi ∈ X, where
each descriptor lies in the space X, which, in contrast to VLAD, is not restricted to be Rd. In fact, the
only constraint we impose is that X comes with a valid positive definite pd kernel k : X× X→ R.
For example, X could be the space of SPD matrices, with the Gaussian kernel defined in Sra (2012);
Jayasumana et al. (2013). According to the Moore-Aronszajn Theorem Aronszajn (1950), a pd
kernel k(·, ·) induces a unique Hilbert space on X, denoted hereafter by H, with the property that
there exists a mapping φ : X → H, such that k(x,y) = 〈φ(x), φ(y)〉H = φ(x)Tφ(y). Here, we
propose to make use of this property to map the local descriptors toH, which is a vector space, and
perform a VLAD-like aggregation in Hilbert space. The main difficulty arises from the fact that H
may be infinite-dimensional, and, more importantly, that the mapping φ corresponding to a given
kernel k is typically unknown.

Let us suppose that we are given a codebook C = {φ(ci)}mi=1 inH. For instance, this codebook
can be computed using kernel kmeans. To compute a VLAD code inH, we need to provide solutions
for the following operations:

1. Determine the assignments {aij} inH.

2. Express the LDVs inH.

To determine the assignments, we note that

‖φ(x)− φ(y)‖2 = k(x,x)− 2k(x,y) + k(y,y) . (3)

Therefore, for each local descriptor, the nearest codeword can can be determined using kernel values
only, i.e., without having to know the mapping φ, which lets us directly define the assignments.

4



Unfortunately, expressing the LDVs in H is not this straightforward. Clearly, the form of the
LDVs, given by

δj(X ) =
∑

aij

(
φ(cj)− φ(xi)

)
,

with aij obtained using Eq. 3, cannot be computed explicitly if the mapping φ is unknown, which is
typically the case for popular kernels, such as RBF kernels. However, in most practical applications,
the VLAD vector is not important by itself; What really matters for visual recognition is a notion of
distance between two VLAD vectors. We therefore turn to the problem of computing the distance
of two VLAD vectors in Hilbert space.

To this end, let X = {xi}NXi=1,xi ∈ X and Y = {yi}
NY
i=1,yi ∈ X be two sets of local descriptors.

The implicit VLAD code of X inH can be expressed as

vH(X ) =
[
δT1 (X ), δT2 (X ), · · · , δTm(X )

]T
,

and similarly for vH(Y). Now, we have〈
vH(X ),vH(Y)

〉
H

=

m∑
s=1

δTs (X )δs(Y)

=

m∑
s=1

NX∑
i=1

NY∑
j=1

aisa
j
s

(
φ(cs)− φ(xi)

)T(
φ(cs)− φ(yj)

)

=

m∑
s=1

NX∑
i=1

NY∑
j=1

aisa
j
s

(
k(xi,yj) + k(cs, cs)

− k(xi, cs)− k(yj , cs)
)
, (4)

which again only depends on kernel values.
With this inner product, a linear SVM, in its dual form, can directly be used for classification1.

In our experiments, we rely on this approach, which we refer to as kernel VLAD or kVLAD for
short. This inner product, however, also allows us to employ an RBF-based kernel SVM, since

‖vH(X )− vH(Y)‖2 = 〈vH(X ),vH(X )〉H
− 2〈vH(X ),vH(Y)〉H + 〈vH(Y),vH(Y)〉H .

Note that this essentially yields two layers of kernels, i.e., the RBF kernel of the SVM makes use of
the distance, which itself is expressed in terms of kernel values.

While effective in practice, our kVLAD algorithm, as any kernel method, becomes computa-
tionally expensive when dealing with large datasets. In the remainder of this section, we therefore
introduce three approximations to kVLAD, that address this limitation while still benefiting from
the nice properties of kVLAD.

2.3 Nyström Approximation (nVLAD)

As a first approximation to kVLAD, we propose to make use of the Nyström method. Follow-
ing Perronnin et al. (2010a), this lets us obtain an explicit form for the mapping φ to the Hilbert
spaceH, and thus allows us to approximate a given kernel.

1. Note that this will yield a slightly different optimization problem than the standard kernel-based formulation, since
in our case the inner product itself depends on several kernel values.

5



More specifically, let T = {ti}Mi=1, ti ∈ X be a collection of M training examples, and let K
be the corresponding kernel matrix, i.e., [K]i,j = k(ti, tj). We seek to approximate the elements
of K as inner products between r-dimensional vectors. In other words, we aim to find a matrix
Zr×M, such that K ' ZTZ. The best such approximation in the east-squares sense is given
by Z = Σ1/2V , with Σ and V the top r eigenvalues and corresponding eigenvectors of K. From
the Nyström method, for a new sample x ∈ X, the r-dimensional vector representation of the space
induced by k(x, ·) can be written as

zN (x) = Σ−1/2V
[
k(x, t1), · · · , k(x, tM )

]T
. (5)

Given a set of local descriptors X = {xi}, our nVLAD algorithm then consists of computing
the corresponding {zN (xi)}, and making use of Eq. 1 and Eq. (2) with this new representation.

2.4 Local Subspace Approximation (sVLAD)

Here, we introduce a novel approximation of the Hilbert space H based on the idea of local sub-
spaces. To this end, we first note that the Nyström approximation yields one single global estimate
ofH, used across all the codewords and all the descriptors. However, by looking at Eq. (2), we can
see that the contribution of each codeword in the VLAD vector is independent of the other code-
words, particularly since each local descriptor is assigned to a single codeword. Therefore, there is
no reason for the approximation of H to be shared across all the codewords and descriptors. This
motivates us to define approximate spaces for each codeword individually.

To this end, let {ts,j}Ns
j=1 be the set of training samples that generate the codeword cs. In other

words, as in the conventional VLAD where cs = 1
Ns

∑
j ts,j , we have φ(cs) = 1

Ns

∑
i φ(ts,j).

While, due to the unknown nature of φ, such a codeword cannot be explicitly computed, we can still
evaluate the kernel function at this codeword, since

k(x, cs) = φ(x)Tφ(cs) =
1

Ns

∑
j

φ(x)Tφ(ts,j)

=
1

Ns

∑
j

k(x, ts,j) .

Here, we therefore propose to exploit the subspaces spanned by the training samples associated to
each individual codeword to obtain an approximate representation ofH.

More specifically, let Ss = span({φ(ts,j)}Ns
j=1). We then define

δs(X ) =

N∑
i=1

ais

(
πs
(
φ(cs)

)
− πs

(
φ(xi)

))
, (6)

with πs : H → Ss the projection onto Ss. These projections can be obtained following a similar
intuition as for nVLAD. More precisely, let Ks be the kernel matrix estimated from the training
samples generating cs, i.e., [Ks]i,j = k(ts,i, ts,j). By eigendecomposition, we can write Ks =

U sΛsU
T
s . Then, ΦsU sΛ

−1/2
s , with Φs = [φ(ts,1), · · · , φ(ts,Ns)], forms a basis for Ss. As such,

we can write
πs(x) = Λ−1/2s U s

[
k(x, ts,1), · · · , k(x, ts,Ns)

]
. (7)
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The LDVs δs(X ) can then be obtained for all codeword cs, and concatenated to for the final sVLAD
representation.

Remark 1 Note that one can also use only the top r eigenvectors of Ks to construct an r-dimensional
local subspace inH. This would not only yield the same dimensionality for all local subspaces, but
could also potentially help discarding the noise associated to the {ts,i}Ns

i=1.

2.5 Fourier Approximation (fVLAD)

The previous two approximations apply to general kernels and both Euclidean and non-Euclidean
data. In the Euclidean case, however, other approximations have been proposed for specific ker-
nels Rahimi and Recht (2007); Vedaldi and Zisserman (2012b). Since our experiments on Euclidean
data all rely on RBF kernels, here, we discuss an approximation of this type of kernels based on the
Bochner Theorem Rudin (2011).

According to the Bochner Theorem Rudin (2011), a shift-invariant kernel2, such as Euclidean
RBF kernel, can be obtained by the Fourier integral. As shown in Rahimi and Recht (2007), for
real-valued kernels, this can be expressed as

k(xi − xj) =

∫
Rd

p(ω)zF (xi)zF (xj)dω, (8)

where zF (x) =
√

2 cos(ωTx + b), with b a random variable drawn from [0, 2π]. In other words,
k(xi,xj) = k(xi−xj) is the expected value of zF (xi)zF (xj) under the distribution p(ω). For the
RBF kernel k(xi,xj) = exp(−‖(xi − xj)‖2/2σ2), we have p(ω) = N (0, σ−2Id).

Let {ωi}ri=1, ωi ∈ Rd, be i.i.d. samples drawn form the normal distribution N (0, σ−2Id), and
{bi}ri=1 be samples uniformly drawn from [0, 2π]. Then, the r dimensional estimate of φ(x) ∈ H
is given by

zF (x) =

√
2

r

[
cos(ωT

1 x + b1), · · · , cos(ωT
r x + br)

]
. (9)

Similarly to nVLAD, we can then compute zF (xi) for each local descriptor xi, and use Eq. (1)
and Eq. (2) to obtain a code. In our experiments, we refer to this approach, which only applies to
Euclidean data, as fVLAD.

2.6 Further Considerations

Normalization:
Recent developments have suggested that the discriminatory power of VLAD could be boosted by
additional post-processing steps, such as `2 power normalization and signed square rooting normal-
ization Arandjelovic and Zisserman (2013); Gong et al. (2014). The `2 power normalization, where
each block in VLAD is normalized individually, can easily be performed in kVLAD, since

‖δs(X)‖2H =

NX∑
i,j=1

aisa
j
s

(
k(xi,xj) + k(cs, cs)

− k(xi, cs)− k(xj , cs)
)

2. A kernel function is shift invariant if k(xi,xj) = k(xi − xj).
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is only dependent on kernel values. As a result, the inner product of Eq. 4 after normalizing each
VLAD block independently, i.e.,

〈
v̄H(X), v̄H(Y)

〉
H

=
k∑

s=1

〈
δs(X), δs(Y)

〉
‖δs(X)‖H‖δs(Y)‖H

,

will also only depend on kernel values. By contrast, however, the signed square rooting normal-
ization can only be achieved when explicit forms of the descriptors are available, i.e., in nVLAD,
sVLAD and fVLAD.
Kernelizing Fisher Vectors:
Due to the connection between VLAD and FVs, it seems natural to rely on the ideas discussed above
to kernerlize FVs. One difficulty in kernelizing FV, however, arises from the fact that Gaussian dis-
tributions, which are required to model the probability distributions in FV, are not well-defined in
RKHS. More specifically, to fit a Gaussian distribution in a d-dimensional space, at least d inde-
pendent observations (training samples) are required, to ensure that the covariance matrix of the
distribution is not rank deficient. Obviously, for an infinite dimensional RKHS, this requirement
cannot be met. While, in principle, it is possible to regularize the distributions, e.g., Zhou and Chel-
lappa (2006), we believe that an in-depth analysis of this approach to kernelize FVs goes beyond
the scope of this paper. Note, however, that our approximations of H can be applied verbatim to
derive approximate formulations of kernel FV.

3. Experiments

We now evaluate our different algorithms, i.e., kVLAD, nVLAD, sVLAD and fVLAD, on several
recognition tasks. As mentioned before, our main motivation for this work was to be able to exploit
the power of the VLAD aggregation scheme to tackle problems where the input data is not in
vectorial form. Therefore, we focus on two such types of data, which have becom increasingly
popular in computer vision, namely Covariance Descriptors (CovDs), which lie on SPD manifolds,
and linear subspaces which form Grassmann manifolds. Nevertheless, in addition to this manifold-
valued data, we also evaluate our algorithms in Euclidean space.

3.1 SPD Manifold

In computer vision, SPD matrices have been shown to provide powerful representations for images
and videos via region covariances Tuzel et al. (2006). Such representations have been successfully
employed to categorize, e.g., textures Tuzel et al. (2006); Harandi et al. (2014a), pedestrians Tuzel
et al. (2008) and faces Harandi et al. (2014a).

SPD matrices can be thought of as an extension of positive numbers and form the interior of
the positive semidefinite cone. It is possible to directly employ the Frobenius norm as a similarity
measure between SPD matrices, hence analyzing problems involving such matrices via Euclidean
geometry. However, as several studies have shown, undesirable phenomena may occur when Eu-
clidean geometry is utilized to manipulate SPD matrices Pennec et al. (2006); Tuzel et al. (2008);
Jayasumana et al. (2013). Here, instead, we make use of the Stein divergence defined as

δ2S(A,B) = ln det
(A + B

2

)
− 1

2
ln det

(
AB

)
. (10)
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This divergence was shown to yield a positive definite Gaussian kernel Sra (2012), named the Stein
kernel given by kS : Sn++ × Sn++ → R such that kS(A,B) = exp(−σδ2S(A,B)). In all our
experiments on SPD manifolds, the bandwidth of this kernel was determined by cross-validation on
the training data.

A standard approach when dealing with an SPD manifold consists of flattening the manifold
using the diffeomorphism log : Sn++ → Sym(n), where log and Sym(n) denote the principal matrix
logarithm and the space of symmetric matrices of size n, respectively. Given that Sym(n) is a vector
space, one can then directly employ tools from Euclidean geometry, here the VLAD algorithm, to
analyze SPD matrices mapped to that space. In our experiments, we refer to this baseline as log-
Euclidean VLAD or le-VLAD following the terminology used in Arsigny et al. (2006). Note that
this strategy has been successfully employed in several recent studies (e.g., for image semantic
segmentation Carreira et al. (2012)).

Furthermore, we also compare our algorithms against the state-of-the-art Weighted ARray of
COvariances (WARCO) algorithm Tosato et al. (2013). In WARCO, an image is decomposed into
a number of overlapped patches, each of which is represented with a CovD. Classification is then
performed by combining the output of a set of kernel classifiers trained on local patches. In essence,
WARCO pursues the same goal as us, i.e., to aggregate local non-vectorial descriptors, which makes
it probably the most relevant baseline, here.

In the following experiments on the SPD manifold, we used a codebook of size 32 for all variants
of the VLAD algorithm. Empirically, we observed that, for any algorithm, larger codebooks did not
significantly improve the performance. To provide a fair comparison against WARCO, we use the
same set of features as Tosato et al. (2013). More specifically, from a local patch, a 13 × 13 CovD
is extracted using the features

f(x, y) = [h1(Y ), · · · , h8(Y ), Y, Cb, Cr, ‖g(Y )‖,∠(g(Y ))]T ,

where f(x, y) denotes the feature vector at location (x, y) and Y , Cb and Cr are the three color
channels from the CIELab color space at (x, y). hi(·) is the scaled symmetric Difference Of Offset
Gaussian filter bank, and ‖g(Y )‖ and ∠(g(Y )) are the gradient magnitude and orientation calculated
on the Y channel (see Tosato et al. (2013) for details).

Head Orientation Classification. As a first experiment, we consider the problem of classifying
head orientation using the QMUL and HOCoffee datasets Tosato et al. (2013). The QMUL head
dataset contains 19292 images of size 50 × 50, captured in an airport terminal. The HOCoffee
dataset (see Fig. 2 for examples) contains 18117 head images of size 50× 50. The images typically
include a margin of 10 pixels on average, so that the actual average dimension of the heads is 30×30
pixels. Both datasets come with predefined training and test samples.

In Table. 2, we report the performance of kVLAD, sVLAD and nVLAD, as well as of WARCO
and le-VLAD, on the QMUL and HOCoffee datasets. Note that kVLAD and sVLAD both yield
higher accuracies than the state-of-the-art WARCO algorithm. For example, on HOCoffee, the ac-
curacy of kVLAD surpasses that of WARCO by more than 5%. Note also that kVLAD and sVLAD
yield very similar accuracies, which evidences the good quality of our local subspace approxima-
tion. Interestingly, sVLAD even outperforms kVLAD on QMUL. This can be attributed to the
square root normalization, which is not possible for kVLAD. Without this normalization, the per-
formance of sVLAD drops by roughly 1%, and thus remains close to, but slightly lower than that of
kVLAD. Among the approximations, sVLAD is superior to nVLAD. This is not really surprising,
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Figure 1: Samples from the HOCoffee dataset.

Figure 2: Samples from the HOC dataset.

since nVLAD relies on a single subspace for all its codewords, whereas sVLAD exploits more local
representations.

Body Orientation Classification. As a second task on the SPD manifold, we consider the prob-
lem of determining body orientation from images using the Human Orientation Classification (HOC)
dataset Tosato et al. (2013). The HOC dataset contains 11881 images of size 64 × 32 (see Fig. 1
for examples) and comprises 4 orientation classes (Front, Back, Left, and Right). In Table. 2, we
compare the performance of kVLAD, sVLAD and nVLAD against that of WARCO and le-VLAD.
First, we note that all VLAD variants, including le-VLAD, are superior to the WARCO algorithm.
This demonstrates the effectiveness of the VLAD aggregation scheme. Moreover, we note that all
our algorithms outperform le-VLAD. The highest accuracy is obtained by sVLAD which again, in
comparison to kVLAD, benefits from the square root normalization.

Altogether, our experiments on SPD manifolds demonstrate that our approach offers an at-
tractive solution to exploiting the information from local patches. Note that, except for a handful
of studies (e.g., WARCO), CovDs are usually extracted from entire images, hence making them
questionable for challenging classification tasks. This is typically due to the fact that aggregating
non-vectorial is an open problem, to which we provide a solution in this paper.

Table 2: Recognition accuracies for QMUL, HOCoffe and HOC.

Method QMUL HOCoffee HOC
lE-VLAD 87.6% 77.2% 79.7%
WARCO Tosato et al. (2013) 91% 80% 78%

nVLAD 88.9% 83.4% 81.4%
sVLAD 92.7% 84.0% 84.1%
kVLAD 92.2% 85.3% 83.1%
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3.2 Grassmann Manifold

The space of p dimensional subspaces in Rd for 0 < p ≤ d is not a Euclidean space, but a Rie-
mannian manifold known as the Grassmann manifold G(p, d). A point U ∈ G(p, d) is typically
represented by a d× p matrix U with orthonormal columns, such that U = Span(U). The choice
of the basis to represent U is arbitrary and metrics on G(p, d) are defined so as to be invariant to this
choice. The projection distance is a typical choice of such metric. It was recently shown to induce
a valid positive definite kernel on G(p, d) Harandi et al. (2014b), i.e., the projection RBF kernel
defined as

kp(A,B) = exp(σ‖ATB‖2F ), σ > 0 . (11)

As for the SPD manifold, in our experiments, the bandwidth of this kernel was obtained by cross-
validation on the training data.

Several state-of-the-art image-set matching methods model sets of images as subspaces Harandi
et al. (2013, 2014b). However, to the best of our knowledge, all these methods rely on a holistic
subspace representation. This again is probably due to the fact that, before this paper, no aggregation
schemes on Grassmann manifolds have ever been proposed. Our approach, by contrast, enables us
to break an image-set into smaller blocks, represent each block by a linear subspace, and aggregating
these subspace to form a complete image-set descriptor.

In our experiments, we compare the results of our algorithms against two baselines: First, sim-
ilarly to the log-Euclidean approach on SPD manifolds, we propose to flatten G(p, d) at Id×p

3 and
perform conventional VLAD in the resulting Euclidean space. We will refer to this method as
le-VLAD. As a second baseline, we make use of the state-of-the-art Grassmannian Sparse Cod-
ing (gSC) algorithm of Harandi et al. (2013), which describes each image-set with a single linear
subspace.

Below, we evaluate the performance of our algorithms and of the baselines on three different
classification problems, i.e., object recognition, action classification and pose categorization from
image-sets.

Action Recognition. As a first experiment on the Grassmannian, we make use of the Ballet
dataset Wang and Mori (2009). The Ballet dataset consists of 8 complex motion patterns performed
by 3 subjects (see Fig. 3 for examples). We extracted 1200 image-sets by grouping 5 frames de-
picting the same action into one image-set. The local descriptors for each image-set were obtained
by splitting the set into small blocks of size 32 × 32 × 3 and utilizing Histogram of Oriented Gra-
dient (HOG) Dalal and Triggs (2005). We then created subspaces of size 31 × 3, hence points on
G(3, 31). We randomly chose 50% of imagesets for training and used the remaining sets as test sam-
ples. The process of random splitting was repeated ten times and the average classification accuracy
is reported.

In Table 3, we report the accuracy of algorithms and of the gSC and le-VLAD baselines. First,
note that all the local approaches outperform the holistic gSC method. Furthermore, similarly to
the two experiments on SPD manifolds, the maximum accuracy is obtained by sVLAD, closely
followed by kVLAD.

Object Recognition. For the task of object recognition from image-sets, we used the CIFAR
dataset Krizhevsky and Hinton (2009). The CIFAR dataset contains 60000 images (32× 32 pixels)
from 10 different object categories. From this dataset, we generated 6000 image-sets, each one

3. We use Id×p to denote the truncated identity matrix.
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Figure 3: Samples from the Ballet dataset.

Figure 4: Samples from CMU-PIE.

containing 10 random images of the same object. In our experiments, we used 1500 image-sets
for training and the remaining 4500 image-sets as test data. We report accuracies averaged over 10
random image-set generation processes.

To generate local descriptors, we decomposed each image-set into small blocks of size 8×8×5.
Each block was then represented by a point on G(5, 64) using SVD. In Table. 3, we compare the
results of kVLAD, sVLAD and nVLAD against those of le-VLAD and gSC. Here, kVLAD yields
the best accuracy followed by sVLAD.

Pose Classification. As a last experiment on the Grassmannian, we evaluated the performance
of our algorithms on the task of pose categorization using the CMU-PIE face dataset Sim et al.
(2003). The CMU-PIE face dataset contains images of 67 subjects under 13 different poses and 21
different illuminations (see Fig. 4 for examples). The images were closely cropped to enclose the
face region and resized to 64 × 64. We extracted 1700 image-sets by grouping 6 images with the
same pose, but different illuminations into one image-set. The local descriptors for each image set
were obtained by splitting the set into small blocks of size 32 × 32 × 3 from which we computed
Histogram of LBP Ojala et al. (2002). We then created subspaces of size 58 × 3, hence points on
G(3, 58). Table 3 compares the results of nVLAD, sVLAD and kVLAD against those of gSC and
le-VLAD. The highest accuracy is obtained by kVLAD, this time by a large margin over the second
best, sVLAD. Note that, with this dataset, flattening the manifold through its tangent space at I58×3
seems to incur strong distortions, as indicated by low performance of le-VLAD.

3.3 Euclidean Space

Our final experiments are devoted to Euclidean spaces. To this end, we compare the performance of
sVLAD, fVLAD and nVLAD against the conventional VLAD (implementation provided in Vedaldi
and Fulkerson (2008)) on Pascal VOC 2007 Everingham et al. (2010) and on the Flicker Material
Database (FMD) Sharan et al. (2013). Pascal VOC 2007 Everingham et al. (2010) contains 9963
images from 20 object categories. The FMD contains 1000 images from 10 different material
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Table 3: Accuracies for Ballet, CIFAR and CMU-PIE.

Method Ballet CIFAR CMU-PIE
gSC 79.7% 59.9% 75.5%
le-VLAD 91.1% 46.2% 59.6%

nVLAD 88.9% 62.2% 79.5%
sVLAD 94.4% 65.2% 80.1%
kVLAD 92.2% 67.9% 86.3%

Figure 5: Examples of the FMD texture dataset.

categories Sharan et al. (2013). Both datasets have been extensively used to benchmark coding
techniques.

In our experiments, we set the size of the codebook to 256 and extracted SIFT descriptors (with
whitening) as local features. For fVLAD and nVLAD, the size of the RKHS was chosen to be 256
(almost 3 times larger than the original space). While increasing the dimensionality of the RKHS
could potentially improve the results, it would come at the expense of increasing the computational
burden of coding.

Table. 4 compares the recognition accuracies of the proposed coding techniques against con-
ventional VLAD. Similarly to our experiments on manifolds, sVLAD outperforms the fixed ap-
proximation techniques (i.e., fVLAD and nVLAD). Among these fixed approximation techniques,
nVLAD is superior to fVLAD on these two datasets. Nevertheless, all three algorithms achieve
higher accuracies than the conventional VLAD. For example, the difference between sVLAD and
conventional VLAD on Pascal VOC07 exceeds 5%. We acknowledge that the computational load
of kVLAD becomes overwhelming on Pascal VOC07 and FMD as a result of large amount of local
descriptors.

Table 4: Recognition accuracies for VOC07 (mAP) and FMD datasets.

Method VOC07 FMD
VLAD 54.7% 49.4%

nVLAD 56.2% 52.3%
fVLAD 55.8% 50.3%
sVLAD 60.3% 55.2%
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Table 5: Running times for fVLAD, nVLAD, sVLAD and kVLAD on three different geometries. Note that
the running times for fVLAD, nVLAD and sVLAD show the coding time for an image/video, while, in the
case of kVLAD where not explicit encoding is performed, it shows the time needed to evaluate Eq. 4

Method SPD Grassmann Euclidean
nVLAD 650ms 1600ms 35ms
fVLAD N/A N/A 100ms
sVLAD 750ms 1700ms 950ms
kVLAD 80ms 155ms 45ms

3.4 Encoding times

Before concluding, we provide the coding times for the proposed methods on the three different
geometries studied in this work. In particular, we measured the encoding times of sVLAD, fVLAD
and nVLAD on a Quad-core machine using Matlab. We also measured the running time to compute
Eq. 4, which shows the computational load of kVLAD.

The parameters values of the algorithms when measuring these timings were those used in our
experiments. More specifically, for the SPD and Grassmann manifolds, the size of codebook was
chosen to be 32, while, in the case of Euclidean space, it was set to 256. Note that for the Euclidean
case, we assumed that 1000 local descriptors were computed on each image, while, for the SPD and
Grassmann manifolds, this number was set to 100. Table 5 reports all the running times.

4. Conclusions and Future Work

In this paper, we have introduced a kernel extension of the VLAD encoding scheme. We have also
proposed several approximations to this kernel formulation in the interest of speeding up the en-
coding process. Not only do the resulting algorithm let us exploit more sophisticated classification
schemes in the VLAD framework, but they also allow us to aggregate local descriptors that do not lie
in Euclidean space. Our experiments have evidenced that our algorithms outperform state-of-the-art
methods, such as WARCO Tosato et al. (2013) and gSC Harandi et al. (2013), on several manifold-
based recognition tasks. Furthermore, they have also shown that our new encoding schemes yield
superior results compared to the conventional VLAD algorithm. In the future, we plan to explore
possible ways of kernelizing the Fisher vector Perronnin and Dance (2007) method. We also in-
tend to study the concept of coresets Har-Peled and Mazumdar (2004) to reduce the computational
complexity of coding.
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